Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31
1.
Org Biomol Chem ; 21(37): 7616-7638, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37682049

In order to obtain novel antagonists of GluN2B subunit containing NMDA receptors, aryloxiranes were opened with benzylpiperidines. Phenyloxiranes 6 and (indazolyl)oxirane 15 were opened regioselectively at the position bearing the aryl moiety. Reaction of the resulting ß-aminoalcohols 7 and 16 with carboxylic acids under Mitsunobu conditions (DIAD, PPh3) led to rearrangement and after ester hydrolysis to the regioisomeric ß-aminoalcohols 9 and 18. This strategy allows the synthesis of amino-ifenprodil 12 as well using phthalimide in the Mitsunobu reaction. Unexpectedly, the isomeric (indazolyl)oxirane 21 reacted with benzylpiperidines to afford both regioisomeric ß-aminoalcohols 22 and 23. In radioligand receptor binding studies, the indazolyl derivative 18a, which can be regarded as indazole bioisostere of ifenprodil, showed high GluN2B affinity (Ki = 31 nM). Replacement of the benzylic OH moiety of ifenprodil by the NH2 moiety in amino-ifenprodil 12 also resulted in low nanomolar GluN2B affinity (Ki = 72 nM). In TEVC experiments, 18a inhibited the ion flux to the same extent as ifenprodil proving that the phenol of ifenprodil can be replaced bioisosterically by an indazole ring maintaining affinity and inhibitory activity. Whereas 10-fold selectivity was found for the ifenprodil binding site over σ1 receptors, only low preference for the GluN2B receptor over σ2 receptors was detected. The log D7.4 value of 18a (log D7.4 = 2.08) indicates promising bioavailability.

2.
Mol Neurobiol ; 60(12): 7238-7252, 2023 Dec.
Article En | MEDLINE | ID: mdl-37542648

N-Methyl-D-aspartate receptors (NMDARs) composed of different splice variants display distinct pH sensitivities and are crucial for learning and memory, as well as for inflammatory or injury processes. Dysregulation of the NMDAR has been linked to diseases like Parkinson's, Alzheimer's, schizophrenia, and drug addiction. The development of selective receptor modulators, therefore, constitutes a promising approach for numerous therapeutical applications. Here, we identified (R)-OF-NB1 as a promising splice variant selective NMDAR antagonist. We investigated the interaction of (R)-OF-NB1 and NMDAR from a biochemical, bioinformatical, and electrophysiological perspective to characterize the downstream allosteric modulation of NMDAR by 3-benzazepine derivatives. The allosteric modulatory pathway starts at the ifenprodil binding pocket in the amino terminal domain and immobilizes the connecting α5-helix to the ligand binding domain, resulting in inhibition. In contrast, the exon 5 splice variant GluN1-1b elevates the NMDARs flexibility and promotes the open state of its ligand binding domain.


Benzazepines , Receptors, N-Methyl-D-Aspartate , Ligands , Benzazepines/pharmacology , Exons , Learning
3.
J Med Chem ; 66(16): 11573-11588, 2023 08 24.
Article En | MEDLINE | ID: mdl-37580890

Negative allosteric modulation of GluN2B subunit-containing NMDA receptors prevents overstimulation, resulting in neuroprotective effects. Since the phenol of prominent negative allosteric modulators is prone to rapid glucuronidation, its bioisosteric replacement by an indazole was envisaged. The key step in the synthesis was a Sonogashira reaction of non-protected iodoindazoles with propargylpiperidine derivatives. Modification of the alkynyl moiety allowed the introduction of several functional groups. The synthesized indazoles showed very high GluN2B affinity but limited selectivity over σ receptors. Molecular dynamics simulations revealed the same molecular interactions with the ifenprodil binding site as the analogous phenols. In two-electrode voltage-clamp experiments, enantiomeric 3-(4-benzylpiperidin-1-yl)-1-(1H-indazol-5-yl)propan-1-ols (S)-10a and (R)-10a displayed higher inhibitory activity than ifenprodil. In contrast to phenolic GluN2B antagonists, the indazoles were not conjugated with glucuronic acid. It can be concluded that the phenol of potent GluN2B antagonists can be replaced bioisosterically by an indazole, retaining the high GluN2B affinity and activity but inhibiting glucuronidation.


Indazoles , Phenol , Receptors, N-Methyl-D-Aspartate , Binding Sites , Phenols/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Structure-Activity Relationship
4.
Nat Commun ; 14(1): 787, 2023 02 11.
Article En | MEDLINE | ID: mdl-36774438

During influenza A virus (IAV) infections, viral proteins are targeted by cellular E3 ligases for modification with ubiquitin. Here, we decipher and functionally explore the ubiquitination landscape of the IAV polymerase proteins during infection of human alveolar epithelial cells by applying mass spectrometry analysis of immuno-purified K-ε-GG (di-glycyl)-remnant-bearing peptides. We have identified 59 modified lysines across the three subunits, PB2, PB1 and PA of the viral polymerase of which 17 distinctively affect mRNA transcription, vRNA replication and the generation of recombinant viruses via non-proteolytic mechanisms. Moreover, further functional and in silico analysis indicate that ubiquitination at K578 in the PB1 thumb domain is mechanistically linked to dynamic structural transitions of the viral polymerase that are required for vRNA replication. Mutations K578A and K578R differentially affect the generation of recombinant viruses by impeding cRNA and vRNA synthesis, NP binding as well as polymerase dimerization. Collectively, our results demonstrate that the ubiquitin-mediated charge neutralization at PB1-K578 disrupts the interaction to an unstructured loop in the PB2 N-terminus that is required to coordinate polymerase dimerization and facilitate vRNA replication. This provides evidence that IAV exploits the cellular ubiquitin system to modulate the activity of the viral polymerase for viral replication.


Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Viral Proteins/metabolism , Transcription, Genetic , Nucleotidyltransferases/metabolism , Virus Replication , Ubiquitination , Ubiquitins/metabolism , RNA, Viral/genetics
5.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Article En | MEDLINE | ID: mdl-36809224

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


KCNQ1 Potassium Channel , Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Binding Sites , Mutation , Cell Membrane/metabolism
6.
Biol Chem ; 404(4): 279-289, 2023 03 28.
Article En | MEDLINE | ID: mdl-36215695

GluN2B-NMDA receptors play a key role in several neurological and neurodegenerative disorders. In order to develop novel negative allosteric GluN2B-NMDA receptor modulators, the concept of conformational restriction was pursued, i.e. the flexible aminoethanol substructure of ifenprodil was embedded into a more rigid tetrahydro-3-benzazepine system. The resulting tetrahydro-3-benzazepine-1,7-diol (±)-2 (WMS-1410) showed promising receptor affinity in receptor binding studies (K i = 84 nM) as well as pharmacological activity in two-electrode-voltage-clamp experiments (IC 50 = 116 nM) and in cytoprotective assays (IC 50 = 18.5 nM). The interactions of (R)-2 with the ifenprodil binding site of GluN2B-NMDA receptors were analyzed on the molecular level and the "foot-in-the-door" mechanism was developed. Due to promising pharmacokinetic parameters (logD7.4 = 1.68, plasma protein binding of 76-77%, sufficient metabolic stability) F-substituted analogs were prepared and evaluated as tracers for positron emission tomography (PET). Both fluorine-18-labeled PET tracers [18F]11 and [18F]15 showed high brain uptake, specific accumulation in regions known for high GluN2B-NMDA receptor expression, but no interactions with σ 1 receptors. Radiometabolites were not observed in the brain. Both PET tracers might be suitable for application in humans.


Positron-Emission Tomography , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Positron-Emission Tomography/methods , Benzazepines/pharmacology , Benzazepines/chemistry , Benzazepines/metabolism
7.
Cell Physiol Biochem ; 56(6): 663-684, 2022 Nov 25.
Article En | MEDLINE | ID: mdl-36426390

The TWIK-related spinal cord K+ channel (TRESK) is part of the two-pore domain K+ channel family (K2P), which are also called leak potassium channels. As indicated by the channel family name, TRESK conducts K+ ions along the concentration gradient in a nearly voltage-independent manner leading to lowered membrane potentials. Although functional and pharmacological similarities exist, TRESK shows low sequence identity with other K2P channels. Moreover, the channel possesses several unique features such as its sensitivity to intracellular Ca2+ ions, that are not found in other K2P channels. High expression rates are found in immune-associated and neuronal cells, especially in sensory neurons of the dorsal root and trigeminal ganglia. As a consequence of the induced hyperpolarization, TRESK influences neuronal firing, the release of inflammatory mediators and the proliferation of distinct immune cells. Consequently, this channel might be a suitable target for pharmacological intervention in migraine, epilepsy, neuropathic pain or distinct immune diseases. In this review, we summarize the biochemical and biophysical properties of TRESK channels as well as their sensitivity to different known compounds. Furthermore, we give a structured overview about the physiological and pathophysiological impact of TRESK, that render the channel as an interesting target for specific drug development.


Potassium Channels, Tandem Pore Domain , Membrane Potentials/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Neurons/metabolism , Spinal Cord/metabolism
8.
Arch Pharm (Weinheim) ; 355(11): e2200225, 2022 Nov.
Article En | MEDLINE | ID: mdl-35908158

Negative allosteric modulators of N-methyl- d-aspartate receptors containing the GluN2B subunit represent promising drug candidates for the treatment of various neurological disorders including stroke, epilepsy, and Parkinson's disease. To increase the bioavailability and GluN2B affinity, the phenol of the potent benzazepine-based inhibitor, WMS-1410 (3), was replaced bioisosterically by a benzoxazolone moiety and the phenylbutyl side chain was conformationally restricted in a phenylcyclohexyl substituent. A four-step, one-pot procedure transformed the oxazolo-benzazepine 7 into the phenylcyclohexyl derivative 11. The same protocol was applied to the methylated analog 12, which unexpectedly led to ring-contracted oxazolo-isoquinolines 18. This rearrangement was explained by the additional methyl moiety in the 8-position inhibiting the formation of the planar intermediate iminium ion with phenylcyclohexanone. The allyl protective group of 11 and 18 was removed with RhCl3 and HCl to obtain the tricyclic compounds 5 and 19 without substituent at the oxazolone ring. The structures of the rearranged products 18 and 19 were elucidated by X-ray crystal structure analysis. The oxazolo-isoquinoline trans-18 with allyl moiety (Ki = 89 nM) and the oxazolo-benzazepine 5 without substituent at the oxazolone ring (Ki = 114 nM) showed GluN2B affinity in the same range as the lead compound 3. In two-electrode voltage clamp measurements, 5 displayed only weak inhibitory activity.


Phenol , Receptors, N-Methyl-D-Aspartate , Humans , Molecular Structure , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Oxazolone , Benzazepines/chemistry , Benzazepines/pharmacology , Alkylation , Phenols , Chromosome Aberrations
9.
Int J Mol Sci ; 23(11)2022 Jun 03.
Article En | MEDLINE | ID: mdl-35682964

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1ß; IL-6; INF-α; INF-ß) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1ß. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1ß increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1ß and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.


Demyelinating Diseases , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Animals , Cations, Divalent , Chelating Agents/pharmacology , Copper , Cytokines , Demyelinating Diseases/chemically induced , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Mice , Mice, Inbred C57BL
10.
Arch Pharm (Weinheim) ; 355(9): e2200147, 2022 Sep.
Article En | MEDLINE | ID: mdl-35606894

Tricyclic tetrahydrooxazolo[4,5-h]-[3]benzazepin-9-ols 22 were designed as phenol bioisosteres of tetrahydro-3-benzazepine-1,7-diols. Key features of the synthesis are the introduction of the trifluoromethylsulfonyl and allyl protective groups at the heterocyclic N-atoms. Two methods were developed to convert the triflyl-protected ketone 16 into tricyclic alcohols 21 bearing various N-substituents. According to the first method, trifluoromethanesulfinate was removed by K2 CO3 . Following the selective reduction of the imino moiety of 17 with NaBH(OAc)3 afforded the aminoketone 18, which was reductively alkylated and reduced. According to the second method, both the imine and the ketone of the iminoketone 17 were reduced with NaBH4 to yield the aminoalcohol 20, which was alkylated or reductively alkylated to form tertiary amines 21f-21r. In the last step, the allyl protective group of 21 was removed with RhCl3 and HCl to obtain oxazolones 22. In receptor binding studies using [3 H]ifenprodil as radioligand ketone, 22m showed the highest GluN2B affinity (Ki = 88 nM). However, a reduced affinity toward GluN2B subunit-containing N-methyl- d-aspartate (NMDA) receptors was observed for oxazolones 22 compared to bioisosteric 3-benzazepine-1,7-diols. High selectivity of 22m for the ifenprodil binding site of GluN2B-NMDA receptors over the 1-(1-phenylcyclohexyl)piperidine binding site and σ2 receptors was observed, but only negligible selectivity over σ1 receptors. In two-electrode voltage clamp experiments, the 4-phenylbutyl derivative 22d (Ki = 422 nM) demonstrated 80% inhibition of ion flux at a concentration of 1 µM. The differences in GluN2B affinity and inhibitory activity are explained by docking studies. In conclusion, 22d is regarded as a novel scaffold of highly potent GluN1/GluN2B antagonists.


Phenol , Receptors, N-Methyl-D-Aspartate , Benzazepines/chemistry , Benzazepines/pharmacology , Benzoxazoles , Ketones , Phenols , Receptors, Amino Acid , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
11.
Eur J Med Chem ; 237: 114359, 2022 Jul 05.
Article En | MEDLINE | ID: mdl-35468513

N-Methyl-d-aspartate (NMDA) receptors containing one or two GluN2B subunits play a crucial role in a variety of neurodegenerative diseases, such as Alzheimer's and Huntington's disease. In order to increase selectivity for GluN2B NMDA receptors, the piperidine ring of eliprodil (2) was conformationally restricted by introduction of an ethano bridge across C-2 and C-6 resulting in a tropane scaffold. Benzylidenetropanes 15 and 16 and benzyltropanes 17 and 18 were prepared by nucleophilic opening of enantiomerically pure phenyloxiranes 13 and 14 with racemic secondary amines (Z/E)-11 and diastereomeric mixtures (r/s)-12. The diastereomers were separated by preparative HPLC to obtain enantiomerically pure test compounds 15-18. The absolute and relative configuration of the products were determined by X-ray crystal structure analysis. Benzylidenetropanes 15 and 16 as well as benzyltropanes 17 and 18 display very high GluN2B affinity in receptor binding studies. Benzylidinetropanes with the phenyl moiety oriented towards C-5 of the tropane system showed higher GluN2B affinity than their analogs with the phenyl moiety oriented towards C-1. In benzyltropanes endo-configured stereoisomers exhibit higher GluN2B affinity than exo-configured diastereomers. Unfortunately, tropanes 15-18 show also high σ1 and σ2 affinity with the same trends for the stereoisomers as for GluN2B affinity. The high-affinity GluN2B ligand (R,r)-17b was able to inhibit the ion flux in two-electrode voltage clamp experiments using GluN1a/GluN2B expressing oocytes.


Piperidines , Receptors, N-Methyl-D-Aspartate , Ligands , Piperidines/pharmacology , Structure-Activity Relationship , Tropanes
12.
Commun Biol ; 5(1): 301, 2022 04 01.
Article En | MEDLINE | ID: mdl-35365746

Loss-of-function mutations in Kv7.1 often lead to long QT syndrome (LQTS), a cardiac repolarization disorder associated with arrhythmia and subsequent sudden cardiac death. The discovery of agonistic IKs modulators may offer a new potential strategy in pharmacological treatment of this disorder. The benzodiazepine derivative (R)-L3 potently activates Kv7.1 channels and shortens action potential duration, thus may represent a starting point for drug development. However, the molecular mechanisms underlying modulation by (R)-L3 are still unknown. By combining alanine scanning mutagenesis, non-canonical amino acid incorporation, voltage-clamp electrophysiology and fluorometry, and in silico protein modelling, we show that (R)-L3 not only stimulates currents by allosteric modulation of the pore domain but also alters the kinetics independently from the pore domain effects. We identify novel (R)-L3-interacting key residues in the lower S4-segment of Kv7.1 and observed an uncoupling of the outer S4 segment with the inner S5, S6 and selectivity filter segments.


Benzodiazepines , Ion Channel Gating , Benzodiazepines/pharmacology , Mutation
13.
Eur J Med Chem ; 230: 114113, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-35065412

Following the concept of conformational restriction to obtain high affinity σ1 ligands, the piperidine ring of eliprodil was replaced by the bicyclic tropane system and an exocyclic double bond was introduced. The envisaged benzylidenetropanes 9 were prepared by conversion of tropanone 10 into the racemic mixture of (Z)-14 and (E)-14. Reaction of racemate (Z)-14/(E)-14 with enantiomerically pure (R)- or (S)-configured 2-phenyloxirane provided mixtures of diastereomeric ß-aminoalcohols (R,Z)-9 and (R,E)-9 as well as (S,Z)-9 and (S,E)-9, which were separated by chiral HPLC, respectively. X-ray crystal structure analysis of (S,Z)-9 allowed the unequivocal assignment of the configuration of all four stereoisomers. In receptor binding studies with radioligands, (R,E)-9 and (S,Z)-9 showed subnanomolar σ1 affinity with eudismic ratios of 8.3 and 40. In both compounds the 4-fluorophenyl moiety is oriented towards (S)-configured C-5 of the tropane system. Both compounds display high selectivity for the σ1 receptor over the σ2 subtype but moderate selectivity over GluN2B NMDA receptors. In vivo, (R,E)-9 (Ki(σ1) = 0.80 nM) showed high antiallodynic activity in the capsaicin assay. The effect of (R,E)-9 could be reversed by pre-administration of the σ1 agonist PRE-084 confirming the σ1 antagonistic activity of (R,E)-9.


Receptors, sigma , Ligands , Protein Binding , Receptors, sigma/metabolism , Stereoisomerism , Structure-Activity Relationship , Tropanes/pharmacology
14.
Cell Res ; 32(1): 72-88, 2022 01.
Article En | MEDLINE | ID: mdl-34702947

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Potassium Channels , Receptors, Antigen, T-Cell , T-Lymphocytes, Regulatory , Animals , Cell Differentiation , Forkhead Transcription Factors , Humans , Mice , NF-kappa B , Thymocytes , Thymus Gland
15.
Handb Exp Pharmacol ; 267: 113-138, 2021.
Article En | MEDLINE | ID: mdl-34247279

The physiological heart function is controlled by a well-orchestrated interplay of different ion channels conducting Na+, Ca2+ and K+. Cardiac K+ channels are key players of cardiac repolarization counteracting depolarizating Na+ and Ca2+ currents. In contrast to Na+ and Ca2+, K+ is conducted by many different channels that differ in activation/deactivation kinetics as well as in their contribution to different phases of the action potential. Together with modulatory subunits these K+ channel α-subunits provide a wide range of repolarizing currents with specific characteristics. Moreover, due to expression differences, K+ channels strongly influence the time course of the action potentials in different heart regions. On the other hand, the variety of different K+ channels increase the number of possible disease-causing mutations. Up to now, a plethora of gain- as well as loss-of-function mutations in K+ channel forming or modulating proteins are known that cause severe congenital cardiac diseases like the long-QT-syndrome, the short-QT-syndrome, the Brugada syndrome and/or different types of atrial tachyarrhythmias. In this chapter we provide a comprehensive overview of different K+ channels in cardiac physiology and pathophysiology.


Channelopathies , Long QT Syndrome , Action Potentials , Arrhythmias, Cardiac/etiology , Channelopathies/genetics , Heart , Humans , Long QT Syndrome/genetics
16.
ChemMedChem ; 16(20): 3201-3209, 2021 10 15.
Article En | MEDLINE | ID: mdl-34265163

Recent studies have shown the involvement of GluN2A subunit-containing NMDA receptors in various neurological and pathological disorders. In the X-ray crystal structure, TCN-201 (1) and analogous pyrazine derivatives 2 and 3 adopt a U-shape (hairpin) conformation within the binding site formed by the ligand binding domains of the GluN1 and GluN2A subunits. In order to mimic the resulting π/π-interactions of two aromatic rings in the binding site, a [2.2]paracyclophane system was designed to lock these aromatic rings in a parallel orientation. Acylation of [2.2]paracyclophane (5) with oxalyl chloride and chloroacetyl chloride and subsequent transformations led to the oxalamide 7, triazole 10 and benzamides 12. The GluN2A inhibitory activities of the paracyclophane derivatives were tested with two-electrode voltage clamp electrophysiology using Xenopus laevis oocytes expressing selectively functional NMDA receptors with GluN2A subunit. The o-iodobenzamide 12 b with the highest similarity to TCN-201 showed the highest GuN2A inhibitory activity of this series of compounds. At a concentration of 10 µM, 12 b reached 36 % of the inhibitory activity of TCN-201 (1). This result indicates that the [2.2]paracyclophane system is well accepted by the TCN-201 binding site.


Receptors, N-Methyl-D-Aspartate , Animals , Dose-Response Relationship, Drug , Molecular Structure , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Xenopus laevis
17.
Cell Physiol Biochem ; 55(3): 301-310, 2021 Jun 19.
Article En | MEDLINE | ID: mdl-34148308

BACKGROUND/AIMS: Neanderthals, although well adapted to local environments, were rapidly replaced by anatomically modern humans (AMH) for unknown reasons. Genetic information on Neanderthals is limited restricting applicability of standard population genetics. METHODS: Here, we apply a novel combination of restricted genetic analyses on preselected physiological key players (ion channels), electrophysiological analyses of gene variants of unclear significance expressed in Xenopus laevis oocytes using two electrode voltage clamp and transfer of results to AMH genetics. Using genetic screening in infertile men identified a loss of CLC-2 associated with sperm deficiency. RESULTS: Increased genetic variation caused functionally impaired Neanderthals CLC-2 channels. CONCLUSION: Increased genetic variation could reflect an adaptation to different local salt supplies at the cost of reduced sperm density. Interestingly and consistent with this hypothesis, lack of CLC-2 protein in a patient associates with high blood K+ concentration and azoospermia.


Chloride Channels , Genetic Variation , Infertility, Male , Neanderthals , Animals , CLC-2 Chloride Channels , Chloride Channels/genetics , Chloride Channels/metabolism , Humans , Male , Neanderthals/genetics , Neanderthals/metabolism , Oocytes/metabolism , Xenopus laevis
18.
Cell Physiol Biochem ; 55(S3): 108-130, 2021 May 28.
Article En | MEDLINE | ID: mdl-34043299

Transient receptor potential vanilloid (TRPV) channels are part of the TRP channel superfamily and named after the first identified member TRPV1, that is sensitive to the vanillylamide capsaicin. Their overall structure is similar to the structure of voltage gated potassium channels (Kv) built up as homotetramers from subunits with six transmembrane helices (S1-S6). Six TRPV channel subtypes (TRPV1-6) are known, that can be subdivided into the thermoTRPV (TRPV1-4) and the Ca2+-selective TRPV channels (TRPV5, TRPV6). Contrary to Kv channels, TRPV channels are not primary voltage gated. All six channels have distinct properties and react to several endogenous ligands as well as different gating stimuli such as heat, pH, mechanical stress, or osmotic changes. Their physiological functions are highly diverse and subtype as well as tissue specific. In many tissues they serve as sensors for different pain stimuli (heat, pressure, pH) and contribute to the homeostasis of electrolytes, the maintenance of barrier functions and the development of macrophages. Due to their fundamental role in manifold physiological and pathophysiological processes, TRPV channels are promising targets for drug development. However, drugs targeting specific TRPV channels, that are suitable for drug therapy, are rare. Moreover, selective and potent compounds for further research at TRPV channels are often lacking. In this review different aspects of the structure, the different gating stimuli, the expression pattern, the physiological and pathophysiological roles as well as the modulating mechanisms of synthetic, natural and endogenous ligands are summarized.


Analgesics/pharmacology , Antineoplastic Agents/pharmacology , Immunologic Factors/pharmacology , Membrane Transport Modulators/pharmacology , TRPV Cation Channels/metabolism , Analgesics/chemistry , Analgesics/classification , Antineoplastic Agents/chemistry , Antineoplastic Agents/classification , Binding Sites , Brain/cytology , Brain/drug effects , Brain/metabolism , Humans , Immunologic Factors/chemistry , Immunologic Factors/classification , Ion Channel Gating/drug effects , Ligands , Lung/cytology , Lung/drug effects , Lung/metabolism , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/classification , Models, Molecular , Organ Specificity , Protein Binding , Protein Isoforms/agonists , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/classification , Protein Isoforms/metabolism , Protein Structure, Secondary , Spleen/cytology , Spleen/drug effects , Spleen/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/classification
19.
Cell Physiol Biochem ; 55(S3): 1-13, 2021 Mar 03.
Article En | MEDLINE | ID: mdl-33656308

BACKGROUND/AIMS: The NMDA receptor plays a key role in the pathogenesis of neurodegenerative disorders including Alzheimer's and Huntington's disease, as well as depression and drug or alcohol dependence. Due to its participation in these pathologies, the development of selective modulators for this ion channel is a promising strategy for rational drug therapy. The prototypical negative allosteric modulator ifenprodil inhibits selectively GluN2B subunit containing NMDA receptors. It was conformationally restricted as 2-methyl-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine-1,7-diol, which showed high GluN2B affinity and inhibitory activity. For a better understanding of the relevance of the functional groups and structural elements, the substituents of this 3-benzazepine were removed successively (deconstruction). Then, additional structural elements were introduced (reconstruction) with the aim to analyze, which additional modifications were tolerated by the GluN2B receptor. METHODS: The GluN2B affinity was recorded in radioligand receptor binding studies with the radioligand [3H]ifenprodil. The activity of the ligands was determined in two-electrode voltage clamp experiments using Xenopus laevis oocytes transfected with cRNA encoding the GluN1-1a and GluN2B subunits of the NMDA receptor. Docking studies showed the crucial interactions with the NMDA receptor protein. RESULTS: The deconstruction approach showed that removal of the methyl moiety and the phenolic OH moiety in 7-positon resulted in almost the same GluN2B affinity as the parent 3-benzazepine. A considerably reduced GluN2B affinity was found for the 3-benzazepine without further substituents. However, removal of one or both OH moieties led to considerably reduced NMDA receptor inhibition. Introduction of a NO2 moiety or bioisosteric replacement of the phenol by a benzoxazolone resulted in comparable GluN2B affinity, but almost complete loss of inhibitory activity. An O-atom, a carbonyl moiety or a F-atom in the tetramethylene spacer led to 6-7-fold reduced ion channel inhibition. CONCLUSION: The results reveal an uncoupling of affinity and activity for the tested 3-benzazepines. Strong inhibition of [3H]ifenprodil binding by a test compound does not necessarily translate into strong inhibition of the ion flux through the NMDA receptor associated ion channel. 3-(4-Phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepine- 1,7-diol (WMS-1410) shows high GluN2B affinity and strong inhibition of the ion channel. Deconstruction by removal of one or both OH moieties reduced the inhibitory activity proving the importance of the OH groups for ion channel blockade. Reconstruction by introduction of various structural elements into the left benzene ring or into the tetramethylene spacer reduced the NMDA receptor inhibition. It can be concluded that these modifications are not able to translate binding into inhibition.


Adrenergic alpha-Antagonists/pharmacology , Benzazepines/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Adrenergic alpha-Antagonists/chemical synthesis , Allosteric Regulation , Animals , Benzazepines/chemical synthesis , Benzoxazoles/chemistry , Binding Sites , Excitatory Amino Acid Antagonists/chemical synthesis , Humans , Kinetics , Molecular Docking Simulation , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Piperidines/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Radioligand Assay , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Tritium , Xenopus laevis
20.
J Med Chem ; 64(2): 1170-1179, 2021 01 28.
Article En | MEDLINE | ID: mdl-33426889

Ifenprodil (1) is a potent GluN2B-selective N-methyl-d-aspartate (NMDA) receptor antagonist that is used as a cerebral vasodilator and has been examined in clinical trials for the treatment of drug addiction, idiopathic pulmonary fibrosis, and COVID-19. To correlate biological data with configuration, all four ifenprodil stereoisomers were prepared by diastereoselective reduction and subsequent separation of enantiomers by chiral HPLC. The absolute configuration of ifenprodil stereoisomers was determined by X-ray crystal structure analysis of (1R,2S)-1a and (1S,2S)-1d. GluN2B affinity, ion channel inhibitory activity, and selectivity over α, σ, and 5-HT receptors were evaluated. (1R,2R)-Ifenprodil ((1R,2R)-1c) showed the highest affinity toward GluN2B-NMDA receptors (Ki = 5.8 nM) and high inhibition of ion flux in two-electrode voltage clamp experiments (IC50 = 223 nM). Whereas the configuration did not influence considerably the GluN2B-NMDA receptor binding, (1R)-configuration is crucial for elevated inhibitory activity. (1R,2R)-Configured ifenprodil (1R,2R)-1c exhibited high selectivity for GluN2B-NMDA receptors over adrenergic, serotonergic, and σ1 receptors.


Antifibrinolytic Agents/chemistry , Antifibrinolytic Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Antifibrinolytic Agents/chemical synthesis , Antiviral Agents/chemical synthesis , COVID-19/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Models, Molecular , Molecular Structure , Piperidines/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Stereoisomerism , Structure-Activity Relationship , COVID-19 Drug Treatment
...